
General announcements



Electric flux
We can describe the piece of paper (oriented parallel to the screen 
again) with an area vector

– An area vector points perpendicular to the surface whose area you’re 
representing (a normal vector!)

So let’s say the area vector for the piece of paper is pointing away 
from the screen (in the same direction as the electric field).
Electric flux (Φ!) is produced by the electric field component that 
is parallel to the area (normal) vector for a surface.

– Electric flux is a way to measure how much of the electric field (e.g. the 
number of field lines) is passing through a surface of area A.

Mathematically:
Φ! = E $ A = EAcosθ

The angle between E and A

Units: N # m!/C
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What if the surface isn’t regular?
If you have an irregular surface, then simply dotting E and A won’t work. 
This requires calculus! 

We won’t be evaluating these integrals, but it’s worth seeing what this would 
be like in a non-ideal, real-world problem
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Gaussian surfaceImagine a charge, q, inside an irregular 
surface as shown. At some differential 
area on the surface, dA, the electric field 
is as shown.

Summing up all the dA patches, and the 
E at each point (which is NOT uniform), 
would give us the net flux:

*𝐸 $ 𝑑𝐴
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Flux through closed surfaces
Back to the cube: Let’s say there’s a charge Q to the left of the cube as shown. 
What’s the net electric flux through the cube?

Q

The field lines from Q will enter the 
cube on the left…but then exit on 
the right. Every line that enters the 
cube (which is negative flux) will 
also exit the cube (which is positive 
flux).

This means the net flux through the 
cube will be zero!
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Flux through closed surfaces
What if the charge is now inside the cube?

Q

The field lines from Q will now 
exit the cube through each 
face…and there will be a net 
positive electric flux through the 
cube.

Carl Gauss noticed this too, and realized that as long as there is charge enclosed 
within the surface, there will be a net electric flux through that surface. 
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Gauss’s Law
Gauss realized the net electric flux through a closed surface is proportional to 
the net charge enclosed in that surface…but he needed a proportionality constant. 
Imagine a point charge inside a sphere.

Using the idea of flux, and assuming E is perpendicular to A:

Often, instead of using ke, we use a constant called the permittivity of free space, 
𝜺o, which is equal to "

#$%!
= 8.85x10&"! C!/(Nm!)

This makes our equation above into:

Φ' = E # A = EA = 𝑘(
𝑄
𝑟!

4𝜋𝑟! = 4𝜋𝑘(𝑄

Φ' =
𝑄)*+),(
𝜖- This is Gauss’s Law!
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Gauss’s Law
This form of Gauss’s Law is only useful when you have a symmetric surface 
about the point charge producing the electric field. 
This does not have to be a real surface! We are creating a mathematical, 
imaginary surface to aid in our calculations. These are called “Gaussian 
surfaces.” 
As long as we choose a surface (like a sphere) so that the electric field is 
constant everywhere on it, we can use this equation to compute the electric 
field.

In the next few slides, I present an example to show you why and how this is 
so powerful. Thanks, Mr Fletcher, for this set up!
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Back to Gauss’s Law
Gauss’s Law is ALWAYS TRUE, no matter how the geometry shakes out, but it is 
pretty useless unless you can exploit symmetry in a problem.

Example 1: Use Gauss’s Law on the spherical 
surface of radius R and charge Q as shown.

Q

Gaussian surface

What the integral              is apparently asking us to do 
is to define an arbitrary, differential surface area dA
(remember, dA has a magnitude equal to the area of the 
enclosed surface and is directed perpendicularly outward 
from the surface), evaluate both the direction and 
magnitude of the electric field at that surface, dot the
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and       into one another, then do that for all the differential surfaces over the 
entire structure and sum them by integrating. 

Gauss was right.  That flux WOULD equal        .  But because no two points on 
the surface are the same distance from the charge Q, and no two dot products are 
going to be the same (angles different), doing that integral would be a 
NIGHTMARE.  In short, this is an impossible problem to do!!!!!!!

Q
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Example 2: This is Example 1 done more 
reasonable:  Derive an expression for the electric field 
function for a point charge Q. Q

imaginary Gaussian surface

Important observation: There is no given Gaussian 
surface to begin with in this problem, just a hanging 
charge.  We need to create an imaginary Gaussian
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surface around the charge, one that exploits the symmetry of the charge’s electric 
field.  That is, we need to create a surface such that ever point on the surface is 
equidistant from the charge.  

With the imaginary Gaussian surface centered on the charge, ANY differential 
area vector dA will be radially outward, which is to say, in the direction of E, and 
the angle between the electric field vector and the differential area vector will be 
zero (so the cosine in the dot product will equal 1).  With that, we can draw (see 
sketch), then write:
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S∫ = Q
εo

1
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Q

imaginary Gaussian surface

Herein lies the beauty of the method.  Because every 
point on the surface is equidistant from the charge, the 
evaluation of the E at every differential surface dA
WILL BE THE SAME, which is to say, IS A
CONSTANT VALUE, and because it is a constant, we 
can pull it out of the integral.  (Note that we couldn’t do 
that with the original Example 1 because each point was 
a different distance from Q.)  With that, we can write: 
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S∫ = Q
εo

That makes life wonderful, as now the only thing inside the 
integral is the differential surface area dA, and summing that 
over the surface simply yields the total surface area of the 
sphere (         ) . . . So we can further write4πR2
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E d
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S∫ = Q
εo

  ⇒  
!
E 4πR2( ) = Q

εo

     ⇒   
!
E = Q

4πεoR
2

Look familiar?  It should.  It’s the same as the 
electric field function we derived for a point charge 
using Coulomb’s Law! 
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So why is this useful?
Gauss’s Law helps us understand what’s going on inside conductors and insulators, 
and supports what we said about electrostatic equilibrium before. To recap:

– Remember that the field inside a conductor itself is 0!
– Charges on the surface of a conductor can produce electric fields outside 

the conductor (we’ve seen this).
– Placing a charge inside the conductor can also produce an electric field 

outside the conductor! 
– To wit…
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What does the electric field look like here?

air

conductor

air

The conductor has a net positive 
charge Q, distributed on its outer 
surface. From before, we know 
that the electric field inside the 
conductor should be zero. Does 
Gauss’s Law support this?

If our Gaussian surface is inside the 
conductor, it encloses no net charge. 
Because Φ! =

"!"#!$%
#&

= EA, and Qinside = 0, 

there is no electric field inside the conductor.

If our Gaussian surface is outside the conductor, 
it encloses charge Q. Thus, the electric field 
outside the conductor is E = "

(%&'')#&
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Another example
What do the electric field lines look like for a conducting sphere if there is a 
charge Q at its center?

If our Gaussian surface is 
inside the conductor, it 
encloses no net charge! 

This induces a -Q charge on the inside 
surface of the conductor, and a +Q 
charge on the outside.

Thus we end up with field lines as 
shown.

Why are there no field lines in the 
conductor?

How are there field lines outside the 
conductor? A Gaussian surface outside the 

conductor encloses a net 
charge of +Q! 13.    



Electrical shielding

c/o C. Vivo
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Faraday Cage

c/o C. Vivo
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